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Abstract—The problem of device-free passive localization aims on locating moving objects which do not carry any localization

devices. The rationale of this problem is based on the fact that a moving object can result in the changes of received signal strength

(RSS) of the wireless links. Existing studies on this problem usually do not consider the impact of dynamic target speed on device-free

passive localization. However, the experiments show that the localization performance degrades substantially when an object is

moving at dynamic speed. To meet this challenge, in this paper, we propose an adaptive device-free passive localization framework

which has three components to detect target speed change and perform adaptive localization. This framework can be easily adapted

for existing device-free localization methods which are based on the detection of signal strength changes. As demonstrated in the

experiments, the proposed framework can lead to 50 and 30 percent improvement on median and maximum error respectively over the

localization algorithms without considering dynamic moving speeds of the target.

Index Terms—Device-free localization, signal strength, wireless networks, speed change detection

Ç

1 INTRODUCTION

DEVICE-FREE passive localization is an emerging technol-
ogy to locate people without attaching any radio

device to them in pervasive wireless environments. It has
broad applications [1], [2], [3] in intrusion detection in
industrial facilities for asset protection, identification of peo-
ple trapped in a fire building during emergency evacuation,
elder care, and battlefield protection. In these applications,
we do not expect people to carry any radio devices, and
thus the traditional localization techniques [4], [5], [6],
which require wireless devices attached to people to emit
wireless signals to assist localization process, are not appli-
cable. With the widespread deployment of wireless devices,
it is possible to capture the wireless environmental changes
caused by people or intruders who move into the wireless
environments. Therefore, device-free passive localization
has drawn much attention recently for motion detection
and target localization in pervasive wireless environments.

More than one modalities of wireless signal measure-
ments, such as RSS [7], [8], channel impulse response
in ultra wide band (UWB) [9], and polarization [10], have
been utilized to facilitate device-free localization. Among all
these modalities, RSS is especially attractive as the RSS
readings are readily available in the existing wireless

infrastructure, and thus is cost-effective. As a result, there
has been increasing interests in employing RSS for device-
free passive localization recently [1], [8].

Existing RSS-based device-free passive localization sys-
tems mainly rely on the changes of variance of RSS meas-
urements from wireless links to locate the target (e.g.,
intruders or victims) since a large value of variance on a
wireless link infers there is a target moving in the vicinity of
that particular link [1], [2], [11], [12]. For instance, Wilson
and Patwari deployed a RF-based sensor network around a
residential house and used RSS sample variances during a
time window to localize and track people inside the house
[8]. These RSS-based systems do not consider the impact of
dynamic target speed on the performance of passive locali-
zation, and thus the time window of calculating variance is
selected as a fixed value. In practice, however, the target to
be located will most likely move at dynamic speed. For
example, people trapped inside a building during emer-
gency evacuation tend to run around to escape with various
speeds. Also, the intruders of an industrial facility may
move at different speeds when approaching different sec-
tions of the facility. Therefore, the assumption that the tar-
get is moving at constant speed is not proper and may
result in huge impact on the localization performances.

Indeed, in this paper, we first conduct a set of experi-
ments to empirically study the impact of different moving
speeds on the localization performances. We find significant
performance degradation on existing RSS-based device-free
localization algorithms because of ignoring the speed
change of the moving target. To cope with this challenge,
we propose an adaptive speed change detection framework
to improve localization performances over existing device-
free localization systems leveraging the changes of signal
strength. Our framework consists of three components:
speed change detection, determining the size of time
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window, and passive localization. To capture the target
speed changes, we design three speed change detection
schemes, including average variance ratio (Detection-AVR),
variance distribution similarity (Detection-VDS), and likeli-
hood ratio test (Detection-LRT), by utilizing statistical
techniques to capture moving speed changes based on infor-
mation obtained by RSS measurements over wireless links.
Based on the speed change detection results, we adaptively
adjust the time-window size, which is used to calculate vari-
ance, to facilitate accurate passive localization. Finally, we
propose a new algorithm, called RIG, which is inspired by
Algebraic Reconstruction in computational tomography
[13]. RIG does not require tedious environmental parameter
tuning when performing passive localization. We summa-
rize ourmain contributions as follows:

� We illustrate that the performances of existing RSS-
based device-free localization systems degrade
when the target is moving at dynamic speed. Indeed,
there is a need of developing adaptive device-free
localization techniques to handle the objects with
dynamic speeds.

� We propose an adaptive device-free localization
framework. Also, we design three different speed
change detection schemes based on statistical learn-
ing techniques. The proposed framework is a general
framework, which is widely suitable for device-free
localization systems using signal strength.

� We develop a new passive localization algorithm,
named RIG, which is based on Algebraic Reconstruc-
tion. RIG uses triangle-based geometric pivot points
to reduce the position estimation error in addition to
using computational tomography.

� Experiments in a real-world environment validate
the effectiveness of our proposed framework in cop-
ing with dynamic target speed. The results show
that our speed change detection framework can
obtain 50 percent improvement on median error
and 30 percent improvement on maximum error
compared with existing device-free localization
systems.

Overview. The rest of the paper is organized as follows.
We summarize related studies in Section 2. In Section 3,
we introduce the framework overview and experimental
methods used in the paper. Section 4 shows the analysis
of the impact of dynamic target speed on the performan-
ces of device-free localization. Section 5 gives three speed
change detection schemes based on statistical learning. In
Section 6, we show how to adjust time-window sizes
adaptively to facilitate passive localization. Section 7
presents the new device-free localization algorithm and
shows the performance evaluation. Finally, Section 8 con-
cludes the work.

2 RELATED WORK

There is great potential for device-free passive localization
in a variety of areas. Methods in prior work employ differ-
ent sensing modalities to achieve motion detection and
device-free passive localization [1], [9], [10]. For instance,
Pratt et al. proposes to use differential polarization of EM
wave at the receiver to detect object movement [10]. The

impulse response from multi-path measurements of UWB
is leveraged to track the object [9]. The Cramer-Rao lower
bound (CRLB) is derived in different scenarios to analyze
the estimation accuracy of the proposed scheme. Further-
more, a short-range radar system is developed by utilizing
UWB communication [14], which is operating around
10 GHz and can penetrate walls. Youssef et al. [1] demon-
strate using RSS to perform device-free localization, which
is among the first works in this area.

It is popular to perform device-free localization
through RSS measurements, since RSS is widely available
from commodity wireless devices. Generally, there are
two types of schemes: fingerprint-based and model-
based. Fingerprint-based methods conduct training first
and estimate target’s locations by comparing the meas-
urements during the online phase with the training meas-
urements [3], [7], [15], [16], [17], [18], [19], [20]. The
maximum likelihood estimator is proposed to perform
device-free passive detection in a real environment [18].
In large-scale environments, a fingerprint method based
on probabilistic techniques is introduced to locate multi-
ple objects at the coarse-grained zones level [19], [20]. The
characteristics of signal dynamics for wireless links when
one or multiple targets are moving across have been
studied [7], [17], where they construct a signal dynamic
model to obtain the changing behaviors of RSS variance
caused by the moving target. Furthermore, probabilistic
classification methods are proposed in [3] to mitigate the
adverse impact of cluttered indoor environments. Viani
et al. [15], [16], [21], [22], [23] propose a class of
approaches to recast the device-free passive localization
as an electromagnetic inverse problem, and support vec-
tor machine (SVM) classifier is applied to solve the prob-
lem. For instance, learning by example (LBE) approach
based on a multi-class SVM classifier is utilized to mea-
sure the real-time RSS data of wireless links [16], [22],
[23]. Differential RSS measurements are utilized to filter
out the environment contribution and to estimate the
position of the moving target [21]. The training process
aims to define the unknown inverse mapping from the
measured RSS data to the target position. Furthermore, a
wireless architecture [24] for estimating the presence,
movements and behaviors of inhabitants as well as the
insights of state-of-the-art solutions are provided.

Model based algorithms [8], [11], [25] utilize RSS
variance-based radio tomographic imaging (RTI) to reduce
noise effect and infer people’s location from its returned
image. Wilson and Patwari. introduce tomographic imaging
to device-free localization [11], and we compare our pro-
posed algorithm to this model in this paper. Furthermore, a
statistical model is proposed to relate RSS variance to physi-
cal location of the moving target by using a motion image
[8]. Compressive sensing based Tomography combines RF
tomography and compressed sensing techniques to accu-
rately infer environment characteristics [25]. The subspace
decomposition method is further applied to RTI [26], which
improves the robustness of position estimates. Particle filter
based tracking approach is proposed [27], [28] by incorpo-
rating an on-line expectation maximization (EM) procedure
to improve RTI with more efficiency and higher accuracy.
Our proposed framework can be extended to work with
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these studies to improve the tracking accuracy when the tar-
get moves at dynamic speeds. Moreover, an accurate fade
level based model is proposed [29] to quantify temporal fad-
ing on static links, and the location of moving target is fur-
ther estimated via particle filter. The detection and tracking
[30], [31] of human motion are further proposed to adapt to
the changes caused by the moving object to the wireless
environment. The particle filter is utilized to track the loca-
tion of a moving object [31], whereas the location estimation
is updated by assigning linear weights to the streaming
data [30]. None of the aforementioned work has considered
the impact of dynamic target speed to the performance of
passive localization, which could be the case in many real-
world scenarios. In this work, we aim to achieve high accu-
racy in device-free passive localization even when target is
traveling at various speeds.

3 FRAMEWORK OVERVIEW AND EXPERIMENTAL

METHODOLOGY

In this section, we first provide an overview of our pro-
posed adaptive speed change detection framework. We
then describe our experimental methodology used across
the paper.

3.1 Framework Overview

Existing RSS-based device-free localization systems assume
the target is moving under a constant speed. Thus, the local-
ization system parameters are fixed during the localization
process, making the current algorithms suffer from large
performance degradation when target is moving with
dynamic speeds. Our focus in this paper is to achieve high
accuracy of device-free passive localization under dynami-
cally changing speed of the target. To cope with dynamic
moving speeds, there are two challenges: how to capture
the speed changes, and how to adjust the localization sys-
tem parameter adaptively based on the captured changes in
speed? In our work, we propose an adaptive speed change
detection framework to address these challenges as well as
incorporate existing localization techniques for passive
localization.

Our framework consists of three components as shown
in Fig. 1: speed change detection, determining the size of
time window, and passive localization. To capture target
speed changes, we design three speed change detection
schemes, including Detection-AVR, Detection-VDS, and
Detection-LRT based on statistical learning from the infor-
mation obtained from RSS measurements over wireless

links. After the speed change is captured, we propose a
time-window size determination scheme to adaptively
update the localization system parameter, particularly the
window size for RSS variance calculation. Additionally, we
propose a new localization algorithm inspired by Algebraic
Reconstruction in computational tomography, which does
not require tedious environmental parameter tuning when
performing passive localization. We note that our frame-
work is generic which can incorporate any existing localiza-
tion algorithms using signal strength, for example, the
popular RTI method [11]. If no target speed change is
detected, the localization algorithms will be applied directly
with a fixed window size derived from empirical study.

3.2 Experimental Methodology

3.2.1 Experimental Setup

We conduct experiments using active RFID transmitters
and receivers [32] in typical indoor multi-path environ-
ment. Each RFID tag has one antenna. The RFID system
is synchronized by using the techniques provided in [33].
And each RFID tag is a transceiver, which is powered by
a button battery. It can be programmed either as a trans-
mitter or a receiver. Each RFID transmitter periodically
broadcasts beacon massages with its identifier at the fre-
quency of 900 MHz, with packet rate of four packets per
second. After the receivers receive the beacon message,
they extract the information of identifier together with
corresponding RSS and then store it to a Linux machine
that all the receivers connected to. The Linux machine, as
a server, is equipped with a 2 GHz CPU, a 1 GB RAM
and a 120 GB disk. Our framework is general to wireless
devices of other frequency levels such as 2.4 GHz. We
will provide the performance evaluation of the system
using other frequency levels in our future work.

Fig. 1. Adaptive speed change detection framework overview.

Fig. 2. Illustration of experimental deployment.
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3.2.2 Experimental Scenarios

We experiment with two different indoor environments: a
small lab and a large classroom. The small lab with
15 ft� 10 ft size is located on the first floor of Burchard
building at Stevens Institute of Technology, as shown in
Fig. 2a, whereas the large classroom with 45 ft� 35 ft size is
located on the first floor of Babbio center of Stevens Institute
of Technology, as shown in Fig. 2b. The small lab is a micro-
processor lab surrounded by chairs and shelves with elec-
tronic instruments on it, while the large classroom is
equipped with tables and chairs inside it for lectures. The
active RFID tags (denoted as TX) and readers (denoted as
RX) are deployed as a rectangle along the walls inside the
rooms at the height of 3 ft 2 in. The target walks along a rect-
angular trace of 10 ft� 5 ft in the small lab and 30 ft� 15 ft
in the large classroom, depicted in Fig. 2. We experiment

with four different speeds: Speed 1 (58 ft/s), Speed 2 (158 ft/s),

Speed 3 (52 ft/s), and Speed 4 (154 ft/s). During the experiments,

we change the speed using different patterns: increasing
(speed 1! 2! 3! 4), decreasing (speed 4! 3! 2! 1),
and mixture (1! 4! 2! 3).

Furthermore, we conduct experiments under different
wireless link densities. The link density is defined as the
number of transmitter-receiver links over unit area as
shown in Table 1. The most dense link density in the small
lab (DS1) is similar to the link density setup in [11], and the
other link densities of the small lab (DS2 to DS4) are more
sparse than the existing works. All the link densities in the
large classroom (DL1 to DL4) are more sparse than the exist-
ing work. We note that DS4 is equivalent toDL1. To vary the
link density, we reduce the transmitter and receiver in a
uniform way. For example, in the small lab of density DS2,
based on Fig. 2a, we remove RX 1, 3, 5, 7, 9 and 11. To obtain
density DS3, we further remove TX 1, 3, 5 and 7. To obtain
density DS4, we further remove RX 2, 6 and 10. We do the
similar removal for the large classroom to obtain density
DL2 toDL4.

4 IMPACT OF DYNAMIC TARGET SPEED

ON DEVICE-FREE PASSIVE LOCALIZATION

To understand the impact of dynamic target speed on
device-free passive localization, we experiment with differ-
ent walking speeds in indoors. Specifically, we define four
typical speed categories [34]: very slow speed (0-1 ft=s
referred as speed 1) (e.g., an intruder breaks into an office
with caution or people is hiding behind furniture in a fire
building); slow speed (1-2 ft=s referred as speed 2) (e.g.,
walking carefully); normal speed (2-3 ft=s referred as

speed 3) (walking normally); and fast speed (3-4 ft=s referred
as speed 4) (e.g., walking in a hurry). Existing device-free
passive localization systems using signal strength mainly
capture the changes of variance of RSS measurements to
determine whether a target is in the area of interest [1], [2],
[11], [12]. Thus, the variance of RSS measurements becomes
an important metric exploited in device-free localization
systems. In this paper, we use the following definition of
RSS variance as our basis.

We define rl;W ðiÞ as the ith sample of RSS on link l in time
window W , which is used to calculate variance for localiza-
tion algorithms. The variance of the time window W from
link l can be calculated as

ŝ2
l;W ¼

1

N � 1

XN�1
i¼0
ðrl;W � rl;W ðiÞÞ2; (1)

where N is the number of RSS samples within the time win-

dow W , and rl;W ¼ 1
N

PN�1
i¼0 rl;W ðiÞ is the sample mean of

received signal strength within W . It is obvious that time
window of W plays a critical role when calculating RSS var-
iance. And a larger RSS variance value of a wireless link
indicates the target is close to that particular link. Note that
the number of samples N is related to the sampling rate and
time window W . In our work, the sampling rate is fixed,
and set to four packets per second. Thus, we only study the
time windowW in the following paper.

Analysis of variance calculation under different target speeds.
To analyze the impact of different target speeds on the
localization performance, we conduct experiments using
20 RFID tags in a 15 ft� 10 ft student lab with link density
DS1 as described in Fig. 2a. Fig. 3 presents the variance

TABLE 1
Link Density in the Small Lab and Large Classroom
with the Number of Transmitters and Receivers

Small lab Large classroom

Density TX RX links/m2 Density TX RX links/m2

DS1 8 12 6.89 DL1 8 12 0.88
DS2 8 6 3.44 DL2 8 6 0.44
DS3 4 6 1.72 DL3 4 6 0.22
DS4 4 3 0.86 DL4 4 3 0.11

Fig. 3. Variance of signal strength in time series calculated with different
time window under two different speeds, Speed 1 and Speed 2.
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obtained from three adjacent wireless links by using two
different time window when a target is walking across
these three adjacent links sequentially in the order of link
1! link 2! link 3 under Speed 1 and Speed 2 respectively.
When the target crosses the ith link, a moving event of ‘ei’
(i ¼ 1; 2; 3) is derived if the change of RSS variance is above
a threshold.

Fig. 3a shows the correct order of moving events (i.e.,

e1! e2! e3) derived from the calculated variance when

the time window is set to 3 s under Speed 1. However, when

the timewindow is set to 1 s, the derived targetmoving order

becomes e2! e1! e3 as depicted in Fig. 3b, which is incon-

sistent with the groundtruth. Turning to examine Speed 2 (a

faster speed), Fig. 3c presents the correct order of moving

events (i.e., e1! e2! e3) obtained from the calculated vari-

ance when the time window is set to 1 s, whereas the derived

target moving order becomes mixed events ðe1; e2; e3Þwhen

the time window is 3 s as shown in Fig. 3d, which is the

appropriate time window to capture the correct order of

moving events under the slower speed (Speed 1). We thus

define the scenario in Fig. 3b as under-sampling, since the time

window 1s is too small to capture the correct target moving

events for speed 1; and the scenario in Fig. 3d as over-sampling

as the time window 3 s is too large for speed 2. This important

observation indicates that appropriate time window needs

to be chosen to accurately calculate RSS variance and conse-

quently capture the target moving pattern.
Impact of speed change on device-free localization performance.

We next study the impact of different speeds on device-free
localization performance by using the well known RSS-
based device-free localization technique, RTI method [11].
Fig. 4a shows the cumulative distribution function of the
localization error when the time window W is set to 1 s
when the target moves in four different speeds. We find
that the time window 1s produces the best performance
under Speed 2. Whereas the localization process introduces
large localization errors under other speeds with perfor-
mance degradation of 100 percent on median error and
75 percent on maximum error under Speed 4, the same local-
ization algorithm RTI is applied. Similarly, when the target
moves in Speed 1, we find that the localization results
achieve smallest errors when the time window is set to
W ¼ 3 s, which is inline with our observation of RSS

variance changes in Fig. 3a. For example, when comparing
the performance under the time window of 3 s to that of 1 s,
we observe the median error is 80 percent better and the
maximum error is about 100 percent better. The localization
performance clearly shows that choosing the appropriate
time-window to adaptively capture the dynamic target
moving pattern is critical in resulting in accurate location
estimate of the target.

5 SPEED CHANGE DETECTION

In this section, we present our speed change detection
schemes including Detection-AVR, Detection-VDS, and
Detection-LRT scheme. We further evaluate the perfor-
mance of these proposed detection schemes using real data
collected in a variety of experimental scenarios.

5.1 Speed Change Detection Scheme

Although the radio signal is affected by reflection, refrac-
tion, diffraction, and scattering, the RSS of the wireless links
should be relatively stable if there is no movement or
changes in wireless environment. However, the wireless
environment will get affected and result in the changes in
the RSS readings if there is people moving around. The vari-
ance of the RSS readings is thus widely used as a powerful
indicator for motion detection and target localization. Fur-
thermore, the statistical characteristics of variance of the
wireless links should be different under different target
speeds. In particular, the target with faster speed usually
cuts more wireless links than that of slower one does, given
a fixed time interval. Therefore, the number of links with
significant variance changes under the faster speed should
be more than that of the slower one.

Therefore, to detect the speed change, we compare the
RSS variance in two adjacent observed time intervals: the
current time interval DT and the previous time interval
DT 0. These two time intervals are non-overlapping with the
same size. We randomly choose two experimental runs
each for two speeds (Speed 1 and Speed 2) when the target
moves across wireless links. The received signal variance
distribution is depicted in Fig. 5. We observe that the distri-
bution of the variance is different for different speeds. Fur-
thermore, the same speed (i.e., the experimental runs 1 and 2
under Speed 1) exhibits similar variance distributions over
the wireless links. Specifically, faster speeds (e.g., Speed 2)

Fig. 4. Device-free localization using Radio Tomographic Imaging
method: (a) using the same time window W ¼ 1 s for RSS variance cal-
culation under four different speeds; and (b) using different time window
for RSS variance calculation under Speed 1.

Fig. 5. Histogram of RSS variance by randomly choosing two experi-
mental runs for (a) speed 1 and (b) speed 2 respectively with time inter-
val DT ¼ 2 s.
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produce more large values of RSS variance (e.g., over 10)
indicating that more wireless links are affected due to sig-
nificant variance changes under the faster speed. Thus, the
larger the difference of the variance distribution in these
two adjacent windows is, the higher probability that the
target changes its speed. This motivates us to capture the
statistical changes of the observed variance as a basis to
design our speed change detection schemes. We note that
existing works propose to detect and estimate the speed of
vehicles based on statistical and curve fitting approaches
[35] and differentiate between human and vehicles based
on the mean and variance of received signal strength [36].
It is different from our work in that they do not perform
localization, and the speed estimation approach is
designed for vehicles’ speed. We focus on targets in
indoors by utilizing statistical methods to detect target
speed change, and further adaptively adjust the time-win-
dow size to facilitate accurate passive localization. The
proposed framework works with individual moving tar-
gets or multiple targets moving together. We will study
the scenario of multiple targets moving separately in our
future work.

5.1.1 Average Variance Ratio (Detection-AVR)

We define AVR as,

AVR ¼ 1

L

XL
l¼1

s2
l;DT

s2
l;DT 0
ðAVR > 0Þ; (2)

where L is total number of links, s2
l;DT is the variance of

link l for DT , and s2
l;DT 0 is the variance of link l for DT 0.

When the average variance ratio AVR falls below an
empirical threshold t1 (0 < t1 < 1) or exceeds an empirical
threshold t2 (t2 > 1), we declare a speed change detected;
otherwise, we declare it as no speed change. Detection-
AVR is a simple scheme with lightweight computational
cost that only captures coarse-grained information of vari-
ance distribution for speed change detection. We next
describe Detection-VDS scheme, which can capture the
distribution difference of the variance in current and pre-
vious time intervals. Note that the average variance ratio
technique can be also used to detect the presence of a tar-
get in the area of interest [19].

5.1.2 Variance Distribution Similarity (Detection-VDS)

To further measure the variance distribution similarity for
speed change detection, we utilize Kullack-Leibler (KL)
divergence metric [37], which measures the difference
between two probability distributions, in Detection-VDS
scheme. When two speeds are similar, the links that are
affected by the moving target at the current time interval
and previous time interval should be similar, and so are the
signal variance distributions under the two speeds. Thus,
the KL-divergence value should be small under similar
speeds. However, when two speeds are significantly differ-
ent, the links that are affected by the moving target at the
current time interval and previous time interval should be
different. And the variance distributions under the two
speeds are different enough to result in two different signal
variance distributions under the two speeds. This can be
observed by a large KL-divergence value.

Given the variance distributions over all links P and Q at
the current time interval DT and previous time interval DT 0

respectively, the KL-divergence metric is defined as,

DKLðP jjQÞ ¼
X
l

P ðxÞ lnP ðxÞ
QðxÞ : (3)

We declare a speed change when DKLðP jjQÞ exceeds a
threshold " (" < 1); otherwise, we declare no speed change.
If the variance distribution P or Q contains a value equal to
0, we replace it with a small value z in order to avoid the
infinite KL-divergence value, and we choose z ¼ 0:001 in
our work. Different from Detection AVR, Detection-VDS
tries to utilize a statistical method to capture the differences
between two speeds by studying the fine-grained informa-
tion from the probability distribution of signal variance
under the two speeds.

5.1.3 Likelihood Ratio Test (Detection-LRT)

While the above two methods are straightforward, they do
not model the underlying distribution of variance under dif-
ferent speeds. We further propose a Detection-LRT method
that uses likelihood ratio test for speed change detection
based on variance distribution modeling.

Gaussian approximation.We assume that the RSS measure-
ments are Gaussian distributed. We first present experimen-
tal data to support this assumption, and then provide
further derivations of our scheme. Fig. 6 shows representa-
tive histogram for those links with moving target. The corre-
sponding Quantile-Quantile plot is depicted in Fig. 6b.
Empirically, we observe that most of the links fit the Gauss-
ian distribution well enough to produce an acceptable fit.
We perform the normality test via the Jarque-Bera test and
Kolmogorov-Smirnov test. Over 90 percent of the links
accept the null hypothesis as a normal distribution at the
2 percent significance level.

Modeling. The RSS of the wireless links can be repre-
sented as,

rðiÞ ¼ sðiÞ þ nðiÞ; i ¼ 0; . . . ; N � 1; (4)

where rðiÞ ¼ ½r1ðiÞ � � � rlðiÞ � � � rLðiÞ�T denotes the ith sample
of the received signal strength for the L� 1 wireless links,

Fig. 6. (a) Histogram for typical experimental RSS measurements from
an arbitrary link with a moving target. The smooth curve in red is a fit of
gaussian distribution. (b) Quantile-Quantile plot, where the x-axis repre-
sents the theoretical Gaussian quantile, and the y-axis represents the
measured quantile.
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sðiÞ is defined as the RSS measurements when no human
motion occurs, nðiÞ represents RSS changes due to target
motion and is assumed Guassian, i.e., nðiÞ � Nð0;SnÞ,
Sn ¼ diagfs2

nl
gwith l ¼ 1 � � �L is the covariance matrix. The

change of RSS readings from different wireless links are
assumed independent, thus the covariance matrix Sn is
symmetric and diagonal.

To detect the speed changes, we conduct the statistical
hypothesis testing where the null hypothesis is there is no
speed change H0 and the alternative hypothesis is there
exists speed changesH1:

H0 : rðiÞ ¼ sðiÞ þ nðiÞsp0; i ¼ 0; . . . ; N � 1; (5)

H1 : rðiÞ ¼ sðiÞ þ nðiÞsp1; i ¼ 0; . . . ; N � 1; (6)

where nsp0 � Nð0;Ssp0Þ and nsp1 � Nð0;Ssp1Þ. We note that
sðiÞ can be measured when there is no target motion, thus,
the mean of signal rðiÞ is known for hypothesis testing and

is denoted as m ¼ ðm1 � � �mLÞT . Ssp0 and Ssp1 are unknown
parameters, which are estimated later. The RSS measure-
ments are assumed to be Gaussian distributed in the
hypothesis testing.

Performing detection. Given the RSS measurements
under two hypotheses, we have conditional density func-
tions as

fðR jH1Þ ¼
YN�1
i¼0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞLjSsp1j

q
� exp � 1

2
ðrðiÞ � mÞT ðSsp1Þ�1ðrðiÞ � mÞ

� �
;

(7)

fðR jH0Þ ¼
YN�1
i¼0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞL jSsp0j

q

� exp � 1

2
ðrðiÞ � mÞT ðSsp0Þ�1ðrðiÞ � mÞ

� �
; (8)

where R ¼ ½rð0Þ � � � rðN � 1Þ�.
The log-likelihood function of hypothesis testing is,

lnðLðRÞÞ ¼
XN
i¼1

�
1

2
rðiÞT ½ðSsp0Þ�1 � ðSsp1Þ�1�rðiÞ

þ mT ½ðSsp1Þ�1 � ðSsp0Þ�1�rðiÞ þ C

�
;

(9)

where C ¼ 1
2 ln

jSsp0j
jSsp1j þ mT ½ðSsp0Þ�1 � ðSsp1Þ�1�m. We

define ~yðiÞ ¼ ½ðSsp0Þ�1 � ðSsp1Þ�1�
1
2rðiÞ, and ~m ¼ ½ðSsp0Þ�1�

ðSsp1Þ�1�
1
2m. Then, Equation (9) can be reformed as,

lnðLðRÞÞ ¼ 1

2

XN
i¼1
j~yðiÞ � ~mj2 �N ~mT ~mþNC

¼ 1

2

XN
i¼1
j~yðiÞ � ~mj2 þN

2
ln
jSsp0j
jSsp1j :

(10)

We accept H1, if lnðLðRÞÞ > g. Then, the test statistic can
be written as,

T ðRÞ ¼
XN
i¼1
j~yðiÞ � ~mj2 ¼

XN
i¼1
jðSsp0Þ�1 � ðSsp1Þ�1j � jrðiÞ � mj2

> 2g �N ln
jSsp0j
jSsp1j ¼ g 0:

(11)

Therefore, we have

T 0ðRÞ ¼
XN
i¼1
jrðiÞ � mj2 >

2g �N ln
jSsp0j
jSsp1j

jðSsp0Þ�1 � ðSsp1Þ�1j
¼ g 0: (12)

Since rðiÞ and m are both L� 1 vectors, the test statistic
T 0ðRÞ can be written as,

T 0ðRÞ ¼
XN
i¼1

XL
l¼1
ðrlðiÞ � mlÞ2 ¼

XN
i¼1

s2
l

XL
l¼1

ðrlðiÞ � mlÞ2
s2
l

¼
XL
l¼1

s2
l

XN
i¼1

ðrlðiÞ � mlÞ2
s2
l

( )
¼

XL
l¼1

s2
l T
0
l ðRÞ > g 0;

(13)

where T 0l ðRÞ ¼
PN

i¼1
ðrlðiÞ�mlÞ2

s2
l

� x2ðNÞ, g 0 ¼
2g�N ln

jSsp0 j
jSsp1 j

jðSsp0Þ�1�ðSsp1Þ�1j
,

g 0 can be obtained by satisfying a certain false positive rate.

The test statistic T 0ðRÞ is the weighted sum of central chi

square distribution. In the literature, efficient method of the

exact representations and approximation of this distribution

have been well investigated. We refer the study in literature

[38] for the distribution of the test statistics.

In Equation (12), Ŝsp1 and Ŝsp0 can be found by maxi-
mum-likelihood estimation (MLE) [39] of fðR jH1Þ and
fðR jH0Þ.

We have the estimated covariance matrix for one speed
at current time interval DT ,

ŜDT ¼ 1

N

XN�1
i¼0
ðrðiÞ � rðiÞÞðrðiÞ � rðiÞÞT ; (14)

where r is the sample mean of the ith sample for DT . Then,

we take its diagonal as Ŝsp1 ¼ diagfŜDTg. Similarly, for the

previous time interval DT 0, Ŝsp0 ¼ diagfŜDT 0 g.

5.2 Detection Performance

Metrics. To evaluate the performance of the proposed detec-
tion schemes, following metrics have been used. For each
experimental scenario (small lab or large classroom) with a
certain link density, we utilize over 600 testing cases to eval-
uate the performance of our detection schemes.

� True positive (TP) is defined as declaring speed
changes when there exists a speed change.

� False positive (FP) is defined as declaring speed
changes when there is no speed change.

� False negative (FN) is defined as declaring no speed
change when there exists a speed change.

� Detection accuracy (Acc) is defined as the percentage
of the trials that are correctly detected as speed
change or no speed change.
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Detection accuracy. We investigate the detection accu-
racy of our proposed speed change detection schemes by
first using the experimental scenario in the small lab with
density DS1 and the large classroom with density DL1

with time interval DT ¼ 1; 3; 5 s. We set scheme parame-
ters as: t1 ¼ 0:7 , t2 ¼ 2:2, and " ¼ 0:6 for small lab, and
t1 ¼ 0:64 , t2 ¼ 1:8, and " ¼ 0:55 for large classroom. The
thresholds used in our detection schemes are empirical.
We could obtain these thresholds by configuring only
once for each test bed. The detection results are shown in
Table 2. We observe that in both small lab and large class-
room Detection-LRT scheme performs the best among
these three schemes. It has the detection accuracy above
92 percent with only 5 percent false negative rate under
the time interval of 1 and 3 s in the small lab. Whereas in
the large classroom, the detection accuracy is around
90 percent with around 10 percent false negative rate
under the time interval of 1 and 3 s. We notice that Detec-
tion-AVR performs the worst with around 75 percent
accuracy. This is not surprising because Detection-AVR
only utilizes averaged variance for speed change detec-
tion without leveraging fine-grained information of vari-
ance distribution. We also find that the increased
detection time interval degrades the detection perfor-
mance. This is because the large detection time interval
flattens out the granularity of the information obtained
from the RSS measurements. The larger the interval is,
the more blurriness the results are. We thus choose
DT ¼ 1 s for the rest of our study.

Impact of link density. In this study, we vary the link den-
sity from DS1 ! DS4 in the small lab environment. The
results are presented in Fig. 7. We find that the decreased
link density degrades the detection performance due to the
less link density carries less information of the variance dis-
tribution for speed change detection. Particularly, for Detec-
tion-LRT, we observe that the detection accuracy decreases
from over 90 to 70 percent, and false negative increases
from 10 to 15 percent when the link density decreased from
DS1 ! DS4.

Scalability study. We further study the scalability of the
detection schemes when applying to link density DL1 in the
large classroom setting with time interval set to 1 s. As

shown in Fig. 8, we observe that the results in the large
classroom setting is slightly better than that of in the small
lab when the link density is the same. This shows that our
methods can be applied to different scales. Further,
althoughDS4 andDL1 are equivalent, the number of links in
the large classroom is more than that in the small lab. This
indicates both the density and the number of the wireless
links have impact on the detection performance.

6 WINDOW SIZE DETERMINATION

In this section, we describe our window size determination
scheme to adaptively update the window size for RSS vari-
ance calculation for target localization. It includes two steps:
sampling check and window size determination.

Sampling check. Once the speed change is detected, we
need to update the system parameter, particularly the win-
dow size for RSS variance calculation based on the changes
in speed. We first use sampling check to determine whether
the previous time interval for target localization encounter
Under-sampling or Over-sampling, as discussed in Section 4.
We compare the averaged variance over all the wireless
links in current observed samples and previous observed
samples. If the averaged variance in current observed sam-
ples is larger than that in the previous observed samples, we
declare Over-sampling indicating the time-window size for
variance calculation in target localization should be reduced
(i.e., the target is moving faster). Otherwise, it is Under-
sampling, which means we need to update the time-window
size by increasing it (i.e., the target is moving slower).

Window size determination. We utilize a binary search
based method to determine the appropriate time-window
size after sampling check. We define an indicator as

IW ¼ 1
L

PL
l¼1

ŝ2
l;W

ŝ2
l;W�1

to adaptively determine the window size.

For over-sampling scenario, we cautiously update the win-

dow size as W �W
2 (i.e., reduce the window size by half

each time), till 0 < IW
2
� IW < u. Similarly, for under-

sampling scenario, we cautiously update the window size
as W � 2W (i.e., twice the window size each time), till
�u < I2W � IW < 0. After window size determination, we
utilize the updated window size in localization algorithms
for target localization. We note that if we can run all possi-
ble time-window sizes in parallel, we are able to derive an
upper bound for the performance of our approach. We

TABLE 2
Detection Performance of Our Speed Change Detection
Schemes in the Small lab with DensityDS1 and Large

Classroom with DensityDL1 and Time Interval DT ¼ 1; 3; 5 s

Small Lab (DensityDS1)

Detection-AVR Detection-VDS Detection-LRT

DT TP FP Acc TP FP Acc TP FP Acc

1 s 0.85 0.26 0.795 0.82 0.18 0.82 0.91 0.05 0.93
3 s 0.84 0.32 0.76 0.85 0.22 0.815 0.9 0.05 0.925
5 s 0.81 0.32 0.745 0.81 0.21 0.8 0.91 0.12 0.895

Large Classroom (DensityDL1)

Detection-AVR Detection-VDS Detection-LRT

DT TP FP Acc TP FP Acc TP FP Acc

1 s 0.82 0.27 0.78 0.84 0.19 0.8 0.92 0.1 0.91
3 s 0.79 0.31 0.74 0.85 0.215 0.79 0.9 0.11 0.895
5 s 0.77 0.35 0.715 0.79 0.23 0.775 0.88 0.2 0.85

Fig. 7. Impact of link density on detection schemes when time interval
DT is set to 1s in the small lab.
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would like to take this as our future work to further quan-
tify the accuracy of our framework.

Performance evaluation. We measure the sampling check
performance by computing the accuracy of sampling check.
That is how accurate the sampling check determines
Over-sampling and Under-sampling. The window size
determination performance could be measured by exam-
ining the localization performance, which will be pre-
sented in Section 7. Empirically, we set the parameter
u ¼ 0:3 and 0:26 for the small lab and the large classroom
respectively.

Accuracy. Table 3 shows the accuracy of sampling check
under different link densities with different observed
samples in both the small lab and the large classroom set-
tings. We find that the accuracy is all over 90 percent,
and as high as 98 percent when the number of observed
samples are 4 and 12 under link density DS1 in the small
lab. We also notice that the accuracy is not sensitive to
the system parameters, i.e., link density and number of
observed samples, although the accuracy decreases
slightly when the link density decreases or the number of
observed samples changes in both the small lab and the
large classroom.

7 PASSIVE LOCALIZATION

In this section, we first introduce our new localization algo-
rithm named as Reshaping-Involved Grid Reconstruction
(Localization-RIG), and two existing representative algo-
rithms (Radio Tomographic Imaging (Localization-RTI) and
Intersection Method (Localization-ISM)) that we utilize to
validate our proposed framework. We then evaluate the
localization performance through the impact of speed

change detection schemes, incorporating different localiza-
tion algorithms, and the impact of link density.

7.1 Localization Algorithms

7.1.1 Reshaping-Involved Grid Reconstruction

(Localization-RIG)

Our proposed algorithm is inspired by Algebraic Recon-
struction in computational tomography to avoid tedious
environmental parameter tuning when performing passive
localization. It consists of two main steps: grid reconstruc-
tion and triangle reshaping.

Step 1: Grid reconstruction. We first divide the area of
interest into multiple grids as illustrated in Fig. 9a. Each
grid has multiple wireless links going through it. The basic
idea is to locate the grid ðx; yÞ that contains the largest accu-
mulated RSS variance from all the links passing through it
and return the coordinate of that grid as the initial estima-
tion of the target’s position. For a particular link l, the RSS

variance ŝ2
l;W can be calculated based on Equation (1) with

W determined adaptively from Section 6. We then define
pxj;yj as the value of the jth grid ðxj; yjÞ indicating the accu-

mulated RSS variance from all the links passing through

it. The relationship between ŝ2
l;W and pxj;yj is ŝ2

l;W ¼PNp
j¼1 al;jpxj;yj , where al;j is called the attenuation coefficient

for the jth grid and lth link with j ¼ f1 � � �Npg and Np is the
total number of grids. The attenuation coefficient is deter-
mined by the contribution of the variance of the lth link to
the jth grid. We define ai;j as below:

al;j ¼ 1; d � dg
2 ;

0; otherwise;

�
(15)

where d is the distance between the center of jth grid and
link l, and dg is the half width of each square grid. We need
to locate the grid with the largest value of pxj;yj to obtain the

location estimation of the target. Thus, the relationship

between RSS variance vector ŝ2
Wŝ
2
W = ½ŝ2

1;W ; ŝ2
2;W ; . . . ; ŝ2

L;W �T
and p ¼ ½px1;y1 ; px2;y2 ; ::; pxNp

;yNp
�T can be described as a set of

linear equations:
ŝ2
Wŝ
2
W ¼ Ap; (16)

where A is a L�Np matrix with each column describing a
single grid and each row representing the attenuation

TABLE 3
Accuracy of Sampling Check in Two Scales of Testbeds: Small
Lab and Large Classroom with Different Densities when the

Number of Observed Samples S per Transmitter and Receiver
Pair are 4, 12, and 20

Small lab Large classroom

S DS1 DS2 DS3 DS4 DL1 DL2 DL3 DL4

4 0.98 0.96 0.94 0.93 0.95 0.94 0.92 0.92
12 0.98 0.95 0.95 0.93 0.94 0.93 0.92 0.91
20 0.96 0.93 0.92 0.91 0.93 0.93 0.91 0.9

Fig. 9. (a) Illustration of Localization-RIG algorithm, and (b) the number
of links that pass each grid in area of interest.

Fig. 8. Impact of scalability on detection schemes when link density is set
to DS4 in the small lab, and DL1 in the large classroom, and time interval
DT is set to 1s.
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coefficient of the ith grid for the lth link. Based on algebraic
reconstruction [40], Equation (16) can be solved by recon-
structing the value of each grid:

pxj;yj ¼
1

Lpj

XLp

l¼1

ŝ2
l;W

dl
; (17)

where Lpj ¼
PL

l¼1 al;j is the number of links that cross the
jth grid and dl is the distance between transmitter and
receiver in lth link. Step 1 obtains px;y ¼ maxfpxj;yjg and

returns ðx; yÞ as the initial position estimation of the target.
The Grid Reconstruction provides the useful informa-

tion of the initial position estimation of the target, how-
ever, we find that the position estimate (marked as
square) is biased and located farther away from the center
of the area as comparing to the true target location
(marked as star) as shown in Fig. 9a. This is because Grid
Reconstruction takes into account of all the links going
through a grid. And it is intuitive that geometrically the
number of links in the area closer to the center is more
than those in the area away from the center. We illustrate
this phenomenon in Fig. 9b. Thus, during the calculation
of the accumulated RSS variance, the grids closer to the
center will result in relative smaller RSS variance values
due to the large number of wireless links may contain
RSS variance value falling beyond the range of 3sl;W ,
making the initial position estimation biased to be farther
away from the center.

Step 2: Triangle reshaping. The objective of Step 2 is to
reduce the location estimation bias introduced in Step 1 by
exploiting only those links with large RSS variance values
in each grid. In particular, we seek to find a pivot point by
forming virtual triangles consisting of links with large RSS
variance values. For each grid, we consider LK (with
LK � L) links with top LK RSS variance values. We choose
any three links out of LK to form a virtual triangle. There

will be maximum Lmax (with Lmax � ðLK
3 Þ) number of trian-

gles and each triangle yields a centroid location. We define
the pivot point ðxpivot; ypivotÞ as the weighted average of all
the triangle centroids:

xpivot ¼
PLmax

j¼1 vjxjPLmax
j¼1 vj

; ypivot ¼
PLmax

j¼1 vjyjPLmax
j¼1 vj

; (18)

where (xj, yj) is the centroid of the jth virtual triangle; vj

is the weight of the triangle and equals to the sum of RSS
variance of three links forming the triangle. Fig. 9a
depicts the scenario of obtaining the pivot point (repre-
sented as circle) by weighted average of the centroid of
two triangles (marked as triangle). We notice that the
resulting pivot point tends to be closer to the center com-
paring to the true location of the target. Thus, by leverag-
ing this pivot point, the target position estimation
(marked as diamond) could be obtained as the middle
point of the initial estimation from Grid Reconstruction
and the pivot point.

7.1.2 Existing Methods

Besides our proposed Localization-RIG method, we also
evaluate the performance of two representative passive
localization algorithms under our framework.

Radio tomographic imaging (Localization-RTI). This method
takes advantage of the variance of RSSmeasurements caused
by the moving target in the wireless environment. The signal
strength of a wireless link is dependent on the power that
travels through space containing moving targets. A linear
model relating variance of RSS measurements to physical
locations of moving target is introduced and utilized to
obtain estimation of a motion image. Tikhonov regulariza-
tion is utilized to solve the set of linear equations formulated
by either the variance or the mean of RSS measurements.
Valuable noise models are derived based on real measure-
ments of a deployed RTI system [8], [11].

Intersection method (Localization-ISM). This method con-
structs a signal dynamic model to obtain the changing
behaviors of RSS variance caused by the moving targets.
It utilizes the RSS variance between the static environ-
ment and the dynamic environment to estimate the loca-
tion of target. The coordinates are derived from the
intersection of any two influential links. The weight of the
two intersected influential links is defined as the sum of
the RSS change of the two influential links. The final esti-
mation is calculated as the weighted average value of all
the intersection points [7].

7.2 Performance Evaluation

7.2.1 Impact of Speed Change Detection Schemes

We first analyze the impact of speed change detection
schemes on passive localization performance. We show the
cumulative distribution function (CDF) of the localization
error, the distance between the estimated location to the true
target location, when using proposed Localization-RIG
method under three speed change detection schemes with
time interval set to 1 s as shown in Fig. 10 in both the small lab
as well as the large classroom environments. We observe that
localization performance has been improved largely when
the speed change detection schemes are applied. Specifically,
in the small lab, themedian error decreases from 3 ft under no
speed change detection to around 1:8 ft under Detection-LRT
(40 percent improvement), and the maximum error decreases
from 5 to 3:5 ft (30 percent improvement). While in the large
classroom, the median error decreases from 12 ft under no
speed change detection to 5 ft under Detection-LRT (over 50
percent improvement), and the maximum error decreases
from 20 to 14 ft (30 percent improvement).

Fig. 10. Impact of speed change detection schemes on passive localiza-
tion: CDF of localization error comparison when using Localization-RIG
under three speed change detection schemes and without speed
change detection.
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Furthermore, examining the localization performance
among three speed change detection schemes, Detection-
LRT produces the best localization performance on both
median and maximum errors as compared to the localiza-
tion conducted under the other two speed change detec-
tion schemes (Detection-VDS and Dection-AVR). In
particular, in the large classroom, comparing to Detection-
VDS and Detection-AVR, the median error of Detection-
LRT decreases from around 7:5 to 5 ft (33 percent
improvement), and the maximum error deceases from
around 18 to 14 ft (22 percent improvement). This is
because Detection-LRT has the best speed change detec-
tion accuracy among the speed change detection schemes.
This is inline with our previous results as shown in Figs. 7
and 8. These observations are very encouraging as it indi-
cates that our speed change detection framework is highly
effective to produce accurate passive localization results
when target travels with dynamic speeds.

7.2.2 Incorporating Different Localization Algorithms

We next study the performance of our framework by com-
paring the performance of different passive localization
algorithms when they use our framework. There is no addi-
tional setup cost for these localization schemes. Fig. 11
depicts the bar graph of the percentage of localization
improvement when using our framework (i.e., using Detec-
tion-LRT) to that without using our framework (i.e., no
speed change detection). This study involves two, three and
four different target speeds for both experimental setups in
the small lab and the large classroom. In general, for all of
three passive localization algorithms, the localization per-
formance improves when using our framework with speed
change detection. We observe that there are 30�40 percent
improvement on median error and 20�30 percent improve-
ment on maximum error when using our framework versus
no framework applied in the small lab. While in the large
classroom, the improvement increases to 50 percent on
median error and 30 percent on maximum error.

We then compare the performance of our proposed
Localization-RIG over the other two existing localization
algorithms. We find that Localization-RIG outperforms the
other two existing algorithms up to 15 percent on median
error and 20 percent when on maximum error in both the
small lab and the large classroom. When comparing to
Localization-ISM, the localization improvement of our

proposed Localization-RIG increases 20 percent on median
error and 15 percent on maximum error. By comparing
Localization-RTI to Localization-RIG, there are around
15 percent improvement on median error, and 10 percent
improvement on maximum error by using our proposed
Localization-RIG. This is because in our proposed localiza-
tion algorithm, we utilize Triangle Reshaping step by
exploiting those links with large RSS variance values in
each grid to reduce the location estimation bias, which is
introduced by the Grid Reconstruction step.

Furthermore, we examine the localization improvement
using our framework by increasing the number of involved
speed change over that without using our framework. We
observe that the localization improvement increases as the
number of involved speed change increases. In particular,
we find that the localization improvement of Localization-
RIG exhibits from 30 percent to over 40 percent on median
error and from 20 to 30 percent on maximum error when the
number of involved speeds increases from 2 to 4 in the small
lab. We observe the similar trend in the large classroom as
well. These observations suggest that our framework is not
only generic across different algorithms, but also becomes
more effectivewhen themobility dynamics increases.

Time cost. We further study the time performance of the
localization algorithms by measuring the average time cost
per location estimation. Table 4 presents the average time
cost per location estimation over 600 testing points in the
small lab with link density DS1. We find that Localization-
RIG takes longer time than other two localization algo-
rithms because it includes more steps (Grid Reconstruction
and Triangle Reshaping) in location estimation. We note
that there is a trade off between the accuracy and time cost
in choosing the localization algorithms. But, overall the time
cost is modest and remains in millisecond level.

7.2.3 Impact of Link Density

We study the impact of link density on the localization
performance when density varies from DS1 to DS4 in the
small lab and from DL1 to DL4 for the large classroom.
Fig. 12 presents the boxplot of localization error when
using Localization-RIG with Detection-LRT scheme. We
observe that higher link density improves localization
accuracy and makes localization performance more sta-
ble for the small lab as well as in the large classroom.
Specifically, the median error decreases from 5 to around
1:2 ft when the link density increases from DS4 to DS1 in
the small lab. While in the large classroom, the median
error decreases from 17 to around 5:5 ft when the link
density increases from DL4 to DL1. The variation of the
localization error is significantly reduced especially
in the small lab when the link density increases from
DS4 to DS1. We note that the link density of DS4 is

Fig. 11. Percentage of localization improvement of three localization
algorithms when using our framework (Detection-LRT) over that without
using our framework considering different target speeds.

TABLE 4
Average Time Cost per Location Estimation of Localization

Algorithms in the Small Lab with Link DensityDS1

Localization-RIG Localization-RTI Localization-ISM

Time
cost (s)

0.028 0.016 0.011
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equivalent to DL1, which yields comparable median
errors in both the small lab and the large classroom.
However, larger maximum error incurred in the large
classroom scenario is due to rich multi-path effects and
much more sparse link density in the large classroom.

8 CONCLUDING REMARKS

In this paper, we investigate how to improve the perform-
ances of device-free passive localization when targets are
traveling at dynamic speeds. Along this line, we propose
an adaptive speed change detection framework with three
main components: speed change detection, adaptive time-
window size selection, and passive localization. Three
speed change detection schemes are also designed based
on statistical learning from the information obtained by
RSS measurements. Furthermore, we develop a new
device-free localization algorithm, named RIG, which is
inspired by Algebraic Reconstruction in computational
tomography. RIG does not require tedious environmental
parameter tuning when performing passive localization.
Finally, extensive experiments in a real-world environment
are provided to show the effectiveness of our proposed
framework. The results show significant improvement on
localization performance (50 percent improvement on
median error and 30 percent improvement on maximum
error) compared to existing device-free localization sys-
tems without using our framework.
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